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Summary. Data obtained describing terrorist events are particularly difficult to analyse, owing
to the many problems that are associated with the data collection process, the inherent variabil-
ity in the data themselves and the usually poor level of measurement coming from observing
political actors who seek not to provide reliable data on their activities. Thus, there is a need
for sophisticated modelling to obtain reasonable inferences from these data. Here we develop a
logistic random-effects specification using a Dirichlet process to model the random effects. We
first look at how such a model can best be implemented, and then we use the model to analyse
terrorism data. We see that the richer Dirichlet process random-effects model, compared with
a normal random-effects model, can remove more of the underlying variability from the data,
uncovering latent information that would not otherwise have been revealed.
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1. Introduction

The analysis of data on terrorists and terrorist attacks is problematic. These data are either
observed public events, which omit planned but failed or cancelled attacks, or classified infor-
mation at government agencies that are not available to general researchers. Also, most of the
data sets focus purely on incidents: an observed violent attack along with covariates such as
responsible group and target characteristics, as well as the extent of casualties and damage.
This selection along with the outcome of interest, observable violent actions, effectively make
the associated analytical work a case–control study.

Analysing terrorism incidents data has challenges that go significantly beyond those with
regular events-based data or survey research data. Social science data can be extremely difficult
to assess if the creators of the data set are unco-operative subjects. The key problem is that
humans in covert, especially dedicated terrorist networks, for strategic reasons work to conceal
not just their identities and intentions, but also their interactions with others. As a result of
these collection issues, the data contain confounding effects, overlapping explanatory variables,
high measurement error and unmeasured clustering forces. Confounding effects and overlap-
ping explanations exist because the observed variables are often surrogates or summaries of the
actual causal factors that are involved. The level of measurement here is typically from highly
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non-granular nominal variables, and sometimes only purely qualitative information in the form
of textual description. These problems could be considered missing data issues, but the general
statistical tools for handling missing data (e.g. Little and Rubin (2002)) are unhelpful since the
pattern of missingness here is controlled by actors who routinely seek to hide information.

Despite these seemingly insurmountable challenges, terrorism remains an extremely impor-
tant problem because it affects personal safety, internal government policies, public perception
and relations between nations. Normally, researchers who are faced with such problems would
simply abandon the data at hand and develop strategies for collecting new, and more reliable,
information. This simply is not feasible. Collecting data on terrorist activities beyond journal-
istic accounts is expensive, reliant on governments and sometimes even physically dangerous
to the researcher. Although confounding, correlation and measurement error in explanatory
variables can often be handled with careful model specification, the most daunting problem
remains the latent clustering that occurs because terrorist actors are imitative of each other,
communicate between groups and sometimes rely on the same resources.

We address the latent clustering problem with an improved implementation of non-para-
metric Bayesian generalized linear models using a logistic link function and Dirichlet process
random effects. We have found that using Dirichlet process priors for the random effects can
capture latent information in the data that would not otherwise be modelled (Gill and Casella,
2009). This provides a means of incorporating subclustering information in the data on terrorist
events that would not otherwise be revealed in a standard context, even if it cannot be directly
parameterized in the model, thus improving model fit. The term ‘subcluster’ is used in this con-
text instead of ‘cluster’ since the modelling approach does not penalize for overfragmentation
of the real clusters that are hidden in the data. Here we use this tool to study suicide terrorist
attacks in the Middle East and northern Africa from 1998 to 2004.

Our approach is based on a new Gibbs sampling method that was developed in Kyung et al.
(2010a). In the work here, we generalize the newly developed Gibbs sampling based on a mix-
ture representation of the logistic distribution in Kyung et al. (2010a), and we find that the
Gibbs sampler appears to mix more rapidly than the commonly used alternative slice sampler
of Damien et al. (1999). We show that the slice sampler typically has higher auto-correlation
and poorer mixing than the approach that is taken here.

Our results support a theorized but not fully explored notion about terrorist groups. There are
groups or clusters of terrorists who work in similar fashion, either because they communicate or
because they emulate each other. Information from the Markov chain Monte Carlo sampling
scheme produces coefficient estimates that account for this latent trait and therefore condition
on it. Our findings demonstrate that there are reliable coefficient estimates for attack charac-
teristics that are shared across groups in the Middle East and northern Africa over the period
1998–2004. This includes some sensationalist attacks against large government buildings, as
well many more routine smaller events.

2. Background on terrorism data sets

There are now several major databases on terrorist incidents stored at academic institutions
like the University of Maryland (START) and at government agencies like the US Homeland
Security Agency. Event data on terrorist hostage incidents are provided by ‘International terror-
ism: attributes of terrorist events’, which was originally assembled by Mickolus (1982) and later
updated (Mickolus, 2006). This database records transnational terrorist incidents and therefore
ignores so-called ‘domestic terrorism’. Conversely the data set ‘Political violence in the United
States, 1819–1968’ (Levy et al., 1969) lists incidents and covariates for political violence resulting
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in injury or death for about 150 years. The International Policy Institute for Counter-Terror-
ism in Herzlia, Israel, provides a data set of terrorist attacks in Israel. The US Department of
Homeland Security supports the National Memorial Institute for the Prevention of Terrorism
terrorism knowledge base, which provides on line a listing of terrorism incidents with infor-
mation on the terrorists and an emphasis on legal information. Another on-line listing is the
global terrorism database which includes information on global terrorist events starting from
1970. Researchers have used these primarily for creating summary statistics and basic tabular
analyses. Standard statistical modelling has yielded some insights into the determinants and
timing of terrorists incidents (Enders (2007), Enders and Sandler (1995) and Li and Schaub
(2004), for example), but with limited results.

Game theoretic approaches have been used to circumvent the problem of data quality. The way
that governments and terrorists (factions) strategize has been studied, for instance, to explain
why extremist groups often increase terrorist activity after a government has made concessions
to moderate factions. These results have yielded important insights about terrorism in Ireland,
Spain and other countries (Bueno de Mesquita (2005); see also such works as Bueno de Mes-
quita and Dickson (2007), Arce and Sandler (2007), Sandler and Arce (2003), Kydd and Walter
(2002) and Siqueira and Sandler (2006)), but they are not in general motivated by conventional
data analysis.

Another approach is to build models of networks of terrorist and terrorist organizations.
Despite the convention that terrorists should not be treated as unitary actors (Chai, 1993;
Crenshaw, 1981), the study of terrorist organizations as networks is less developed. Social net-
work analysts have discovered that covert organizations tend to be cellular and distributed
rather than hierarchical (Carley, 2004; Krebs, 2002; Rothenberg, 2002), and the government
has supported research to model these as standard networks through the National Research
Council. Carley (2003, 2006) used ‘meta-matrices’ that capture not just the ties between terror-
ists but also their knowledge and tasks from semi-automatic parsing of signal traffic (Tsvetovat
and Carley, 2006). This work yields, among other things, lessons about how best to ‘destabilize’
terrorist networks (Tsvetovat and Carley, 2005; Moon and Carley, 2007).

None of these research tracks has been very successful in building standard semicausal regres-
sion models that are preferred in the social sciences. This is because the data are, in general,
poorly measured and highly non-granular. Specifically, we observe roughly measured categori-
cal variables produced by governments as they record and react to attacks on their soil or against
their citizens elsewhere. A huge part of the problem is that the primary actors under study are
deliberately trying to prevent such data from being collected in an accurate and useful manner.
So, unlike many missing data or poorly measured data problems, the key agents in the data
generation process are not denying observation in benign ways; they are attempting to deny
observation in wilful and strategic ways. Key information, that is almost always missing from
such data, is the intentions of terrorists, strategic alternatives that they face and actions that
failed to achieve any result. All of these problems above mean that the analyst has a doubly
difficult task in creating meaningful inferential models.

3. Data on suicide attacks

The data that we use here come from the global terrorism database II (LaFree and Dugan, 2008),
restricted to events in the Middle East and northern Africa from 1998 to 2004. After removing
almost totally incomplete cases, this provides 1041 violent attacks by terrorist groups, 154 (15%)
of which were suicide attacks where at least one of the individual assailants was killed by design.
Our outcome variable of interest is therefore the dichotomous observation of a suicide attack
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or not. Suicide attacks pose a substantially higher challenge for governments since the assailant
has great control over placement and timing and also does not need to plan his or her escape
(Pape, 2006). Thus they may inflict severe damage to otherwise safe targets.

Terrorism data are notoriously difficult to model from a regression context, so we first pick a
rich set of explanatory variables. Time is important during this era. It is also complex. Our ap-
proach is to designate the start of the period of study as an indicator variable so that estimated
positive or negative coefficients are revealing about a trend. There were 273 terrorist attacks
worldwide in 1998 with a recorded high of 741 killed along with 5952 injured (US State Depart-
ment: http://www.state.gov/www/global/terrorism/1998report/1998index.
htm). Of these 273, 103 were in our geographic area of study. This particular year was also
notable for the incredibly destructive simultaneous bombings of the US Embassies in Nairobi,
Kenya (291 killed; roughly 5000 injured), and Dar es Salaam, Tanzania (10 killed; 77 injured),
in August.

Relatedly, we also consider a variable, MULT.INCIDENT, which indicates whether the attack
is part of a co-ordinated multisite event. This was so in a surprisingly large number of cases, 136
(13.1%). Including this explanatory variable in the model is a means of testing the relationship
between connected events at different sites and the use of suicide attackers.

Sometimes multiple parties are involved in a regional conflict, such as the wars in Iraq and
Afghanistan. This can make it more difficult to assess responsibilities. Strategic actors some-
times make false claims about responsibility (both for and against) as a means of concealing
actions and intentions. Normally, but not always, a suicide attack can be traced to a specific
group since identifying biological information is left at the incident site. Also, in some settings,
the family is forthcoming about the identity of the attacker. We measure this effect with the
variable MULT.PARTY, where (also) 136 out of 1041 cases are coded as 1.

There can also be terrorist incidents in which there is substantial uncertainty about the iden-
tity of any single attacking group. The variable SUSP.UNCONFIRM is coded as 1 (209/1041) if
government officials express notable doubt about attributing responsibility. As with the involve-
ment with multiple parties, we expect this to be less common for suicide attacks (25/209, which
is 12% of such cases).

One key issue is the linkage between the success of the attack and the suicide nature of the
attack. Obviously, there is some linkage or groups would not persist in organizing suicide attacks
over time. Since this is not in question, we ask the question from the perspective of the attacked
party, whose law enforcement, military and intelligence services seek to understand and prevent
further attacks. By using the variable SUCCESSFUL (which was true in 966 of the events) on
the right-hand side of the model specification, we are asking: given that it is a successful attack,
how likely is it that a suicide assailant was used?

An important issue is the type of attack that is used. The data are presented in a quasi-
ordered fashion with the categories (with counts in parentheses) armed assault (385), assas-
sination (47), bombing or explosion (514), facility or infrastructure attack (50), hijacking (7),
barricade incident (3) and kidnapping (35). The model results were highly robust to different
recodings of this variable since armed assaults and bombings dominate. We therefore left the
original ATTACK.TYPE coding in place such that for suicide attackers a positive estimated
coefficient shows a preference for bombing strategies and a negative estimated coefficient shows
a preferences for armed assault. We also consider a variable, WEAPON.TYPE, that is coded 1
for the use of explosives, dynamite, or general bombs to help to differentiate the suicide bomb-
ings from non-suicide bombings (Table 1). This relationship is unbalanced since the bulk of
attacks are not from suicide attackers. However, suicide attackers are typically more effective
in creating casualties and the psychology of suicide attackers is more effective in creating terror
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Table 1. Suicide versus general bomb attacks

Suicide versus bomb

Not bomb Bomb

Not suicide 720 661
Suicide 5 224

within populations. The key relationship here is the heavy use of bombs by suicide attackers.
Note that our subsequent analysis uses the coding that is described in ATTACK.TYPE, not the
dichotomization in Table 1.

Of course the targets that terrorists pick are important to understand. The primary distinction,
which we focus on here, is civilian (832 cases; 0 coding) versus military (209 cases; 1 coding) tar-
gets. As noted terrorists tend to prefer civilian targets since they are usually ‘softer’ (less guarded)
and more plentiful, and the perceived randomness of death and destruction has a greater effect
on the morale of the citizens. This explanatory variable is labelled TARGET.TYPE.

In addition to being successful, we also want to incorporate the extent of human damage that
the terrorist attack inflicts. Again, we look at this not from the terrorist perspective but from
the government perspective by including NUM.FATAL (3424 total) and NUM.INJUR (8123
total) on the right-hand side of the model. So our substantive question is, for higher (or lower)
levels of casualties, what is the likelihood, controlling for other factors, that the terrorists used a
suicide attacker? Another measure of damage is the negative psychological or social effect that
terrorist attacks inflict on national populations. In fact, this is usually the most widespread effect
that such events produce. The collectors of these data subjectively coded this into PSYCHOSO-
CIAL with ascending levels: none, minor, moderate and major (a summary is given below). We
also look at a variable for property damage, which can vary substantially. The data are provided
with yes–no values along with ‘minor’ in between in the variable PROPERTY.DAMAGE.

3.1. Visualizing the suicide data
Consider the four coplots in the four frames of Fig. 1, where two variables are plotted in each,
at levels of a different binary third variable, with different mixes of variables.

Note the similarities and differences in the distribution of fatalities between Figs 1(a) and
1(b). The annual patterns of fatalities for not using a bomb and attacking civilian targets are
very close, except for some high death events at the end of the series in Fig. 1(a), which are
attributable to bombs used on non-military targets. Thus the relationship is subtle and it spans
four variables: year, military target, bomb used and number of fatalities. This confounding of
effects leads to collinearity and is typical of terrorism data. Substantively, the key is that mili-
tary targets are more hardened towards terrorist attacks, even if they are possibly more desirable
political targets by some groups. Civilian attacks also dominate in the data, 867 to 174. Since
terrorism data are difficult to obtain, it is tempting to use as many variables as one can reason-
ably obtain on the right-hand side of regression models. Yet the observed collinearity problem
makes this problematic. So we would like to use TARGET.TYPE and WEAPON.TYPE as
explanatory variables since they reflect a graphically observable difference in effect. However,
this is deleterious to model in conventional ways, which is why we develop a Dirichlet process
for random-effects models which accounts for unobserved clumping in the data that comes from
these overlapping effects.
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Fig. 1. Coplots for Middle East and northern Africa suicide attacks, 1998–2004: (a), (b) comparison of the
year starting with 1998 in the study (x -axis) with the number of fatalities for these years (y -axis) (the compar-
ison is split by whether (a) the target was civilian or military (control, TARGE.TYPE) and whether (b) a bomb
was used (control, WEAPON.TYPE)); (c), (d) comparison of the levels of psychosocial effect (x -axis) against
the number injured (the comparison is split whether (c) there were multiple associated incidents for the single
attack (control, MULTI.INCIDENT) and by whether or not (d) the government attacked has suspicions about
the attackers’ identity (control, SUSP.UNCONFIRM))
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Table 2. Summary for PSYCHOSOCIAL

Level none minor moderate major
Count 18 946 66 11

The real underlying goal for terrorists is not actually the results of the physical violence that
is enacted. Rather it is undermining citizens’ confidence in their government’s ability to protect
them. Thus gory attacks against easy targets that receive widespread media coverage are con-
siderable victories for the planners of such attacks. To explore this strategic consideration we
focus on the relationship between escalating negative psychological or social impact and the
number injured. Injured people are a fundamentally different kind of casualty effect from fatal-
ities because they wander around the scene of the attack, command medical attention, agree to
media interviews and spend the rest of their life discussing the event with friends and relatives.
Thus although fatalities provide horrific statistics, injuries take on a longer psychological life
among citizens of the attacked nation. Therefore Figs 1(c) and 1(d) plot the intensity of the
psychological effect (x-axis) against the magnitude of the number of injuries (y-axis).

In Fig. 1(c) it is easy to see a distinctly different pattern between PSYCHOSOCIAL and
NUM.INJUR for levels of the third dichotomizing variable: whether or not the attack con-
tained multiple associated events (MULT.INCIDENT). Table 2 shows that the bulk of the
psychological or social effects are minor, and these are concentrated in the ‘No’ part of Fig. 1(c)
with low levels of injuries. In contrast, the measures of psychological or social impact for multiple
incidents are almost all minor and moderate but show higher average injuries. The third dichot-
omizing variable in Fig. 1(d) is whether or not the government has notable doubts about the
identity of the attacking party. Here we see that injuries are generally higher when there is cer-
tainty about the attacking group, but also with greater variance. Difficult-to-identify groups
may inflict less damage because they are less bold in their planning as a means of reducing
the government’s detective ability. Figs 1(c) and 1(d) show the same challenge as Figs 1(a) and
1(b): there are interesting, and perhaps important, features in the control variables, but the
high level of collinearity makes these difficult or impossible to include in the same model as
covariates.

This exploratory graphical analysis shows that data on terrorist attacks provide some special
challenges. First, the level of measurement is usually low, with mostly categorical, and some
purely qualitative, variables. Second, as shown in Fig. 1, there are collinear relationships in com-
binations of variables at specific values that can easily be averaged over, and therefore missed, by
standard regression style models. Third, correlation between these variables is almost certainly
due to additional factors. Finally, these data sets are almost always missing key variables about
the intentions, strategies and even failings of the terrorist groups. If these groups are heteroge-
neous in such respects, and in their effectiveness, then we would expect subtle distinctions as
seen in Fig. 1. So it is this appreciation for the difficulties that are inherent in the data analytic
understanding of terrorism that moves us to describing a Bayesian non-parametric set-up that
is intended to make finer grouping distinctions through Dirichlet priors on random effects to
capture latent variability.

4. Generalized linear models and random effects

We need a model structure that accounts for the problems with data that were discussed in
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Section 3, particularly the issue of latent groupings based on unobserved relationships between
cases. Although it is impossible to provide a reliable coefficient estimate of the magnitude of
these effects in the general regression modelling sense since there are no overt indicators, we
can develop a model that accounts for this phenomenon and thus fits such data better than
alternatives that ignore latent groupings. In this section we start with conventional non-lin-
ear regression modelling and build up to our full non-parametric Bayes specification for this
purpose.

4.1. Generalized linear models
Generalized linear models have enjoyed considerable attention over the years, providing a flexi-
ble framework for modelling discrete responses by using a variety of error structures. If we have
observations that are discrete or categorical, y = .y1, : : : , yn/, such data can often be assumed
to be independent and from a distribution in the exponential family, where the likelihood func-
tion has components of the model such as the form of the link function and the type of error
structures that result. The classic book by McCullagh and Nelder (1989) describes these models
in detail; see also the developments in Dey et al. (2000) or Fahrmeir and Tutz (2001).

4.2. Generalized linear mixed models
A generalized linear mixed model is an extension of a generalized linear model that allows
random effects and can give us flexibility in developing a more suitable model when the obser-
vations are correlated, or where there may be other underlying phenomena that contribute to
the resulting variability. Thus, the generalized linear mixed model can be specified to accommo-
date outcome variables conditional on mixtures of possibly correlated random and fixed effects
(Breslow and Clayton, 1993; Buonaccorsi, 1996; Wang et al., 1998; Wolfinger and O’Connell,
1993). Details of such models, covering both statistical inferences and computational methods,
can be found in McCulloch and Searle (2001) and Jiang (2007).

4.3. Dirichlet process random effects
Dirichlet process mixture models were introduced by Ferguson (1973) and Antoniak (1974)
and have been the subject of much research since then, most of which described the theoreti-
cal character of the process, and some estimation strategies (notably Blackwell and McQueen
(1973)). In current applications, a popular strategy is to use Dirichlet process priors in hierar-
chical models. Work by Escobar and West (1995), MacEachern and Müller (1998), Neal (2000)
and Teh et al. (2006) developed models and Markov chain Monte Carlo schemes to fit such
models.

Recently, Dorazio et al. (2007) used a generalized linear mixed Dirichlet model (GLMDM)
with a log-link for spatial heterogeneity in animal abundance. They proposed an empirical
Bayesian approach with the Dirichlet process, instead of the regular assumption of normally
distributed random effects, because they argued that, for some species, the sources of heter-
ogeneity in abundance are poorly understood or unobservable. They noted that the Dirichlet
process prior is robust to errors in model specification and allows spatial heterogeneity in abun-
dance to be specified in a data-adaptive way. Gill and Casella (2009) suggested a GLMDM with
an ordered probit link to model political science data, specifically modelling the stress, from
public service, of Senate-confirmed political appointees in the USA as a reason for their short
tenure. For the analysis, a semiparametric Bayesian approach was adopted, using the Dirichlet
process for the random effect.
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More recently Kyung et al. (2010b) developed algorithms for estimation of the precision
parameter and new Markov chain Monte Carlo algorithms for a linear mixed Dirichlet random-
effects models. Also, they showed how to extend the results to a generalized Dirichlet
process mixed model with a probit link function and used a new parameterization of the
hierarchical model to derive a Gibbs sampler that more fully exploits the structure of the
model and mixes very well. They could also establish that the sampler proposed is an improve-
ment, in terms of operator norm and efficiency, over other commonly used algorithms. Kyung
et al. (2010a) extended the available sampling schemes to handle other link functions, includ-
ing logistic and log-linear. Here we apply their logistic sampling scheme to fit our terrorism
data.

5. Logistic mixed Dirichlet process models

Let Xi be covariates associated with the ith observation, β be the coefficient vector and ψi be a
random effect accounting for subject-specific deviation from the underlying model. Assume that
the Yi|ψ are conditionally independent, each with a density from the exponential family, where
ψ= .ψ1, : : : ,ψn/. Then, based on the generalized linear mixed model notation in McCulloch
and Searle (2001), the GLMDM can be expressed as follows. Start with the generalized linear
model that was described above,

Yi|γ ind∼ fYi|γ.yi|γ/, i=1, : : : , n,

fYi|γ.yi|γ/= exp[{yiγi −b.γi/}=ξ2 − c.yi, ξ/], .1/

where yi is discrete valued. Here, we know that E[Yi|γ]=μi = @b.γi/=@γi. Using a link function
g.·/, we can express the transformed mean of Yi, E[Yi|γ], as a linear function, and we add a
random effect to create the mixed model:

g.μi/=Xiβ+ψi: .2/

Here, for the Dirichlet process mixture models, we assume further that

ψi ∼G, G∼DP.mG0/, .3/

where DP is the Dirichlet process with base measure G0 and precision parameter m. The base
measure functions as an expected distribution in this set-up, and the precision parameter deter-
mines the variabilty around this base measure, which is sometimes called the ‘cylinder’ around
it as a visual image. The base measure can even be specified as a normal distribution, meaning
that m determines the variability of the distributions around this choice. With this model, we
relax the normal assumption, and we provide a richer model to capture more variabilities in the
random effects.

Blackwell and MacQueen (1973) proved that, for ψ1, : : : ,ψn independent and identically dis-
tributed (IID) from G∼DP , the joint distribution of ψ is a product of successive conditional
distributions of the form

ψi|ψ1, : : : ,ψi−1, m∼ m

i−1+m
g0.ψi/+ 1

i−1+m

i−1∑
l=1

δ.ψl =ψi/ .4/

where δ.·/ denotes the Dirac δ-function and g0.·/ is the density function of base measure. Thus,
with n observations from a Dirichlet process with precision parameter m, the marginal distri-
bution of a partition {n1, n2, . . . , nk}, where Σj nj =n, nj �1, is given by
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π.n1, n2, . . . , nk/= Γ.m/

Γ.m+n/
mk

k∏
j=1

Γ.nj/, .5/

which is a normalized probability distribution on the set of all partitions of n observations.
We now define a partition C to be a grouping of the sample of size n into k groups, k=1, . . . , n,

and we call these subclusters since the grouping is done non-parametrically rather than on
substantive criteria, i.e. the partition assigns different parameters across groups and the same
parameters within groups; cases are IID only if they are assigned to the same subcluster. Fur-
thermore, the use of ‘subcluster’ is important to distinguish this grouping from substantive
clusters since there is no penalty term in the model fit for increasing their number.

Applying Lo (1984), lemma 2, and Liu (1996), theorem 1, to formula (4), we can calculate the
likelihood function, which by definition is integrated over the random effects, as

L.θ|y/= Γ.m/

Γ.m+n/

n∑
k=1

mk ∑
C:|C|=k

k∏
j=1

Γ.nj/

∫
f.y.j/|θ,ψj/dG0.ψj/,

where C defines the subclusters, y.j/ is the vector of yis that are in subcluster j andψj is the com-
mon parameter for that subcluster. There are Sn,k different subclusters C, the Stirling number
of the second kind (Abramowitz and Stegun (1972), pages 824–825).

The partition C can be represented by an n×k matrix A defined by

A = .a1, a2, . . . , an/′

where each ai is a 1×k vector of all 0s except for a 1 in the position indicating which group the
observation is from. Thus, A represents a partition of the sample of size n into k groups, with
the column sums giving the subcluster sizes. Note that both the dimension k and the placement
of the 1s are random, representing the subclustering process. On the basis of the representation
in McCullagh and Yang (2006), if the partition C has subclusters {S1, . . . , Sk}, then, if i ∈ Sj,
ψi =ηj and the random effect can be rewritten as

ψ=Aη, .6/

where η= .η1, : : : , ηk/ and ηj
IID∼ G0 for j =1, : : : , k.

Usually, in a regular generalized linear mixed model the random effects accounting for sub-
ject-specific deviation from the underlying model,ψs, are assumed to be distributed as N.0,σ2

ψ/.
In this paper, we assume that ψi ∼DP{m, N.0, τ2/}, i=1, . . . , n, independent. Thus, for η, we
obtain η∼ Nk.0, τ2I/. These ψs are random effects to capture the issue of latent groupings.
Because of the properties of the Dirichlet process that we discussed above, we can develop a
rich model with the random effects for the unobserved relationships.

In this particular paper, we consider only models for the binary responses with a logit link
function. So we model

Yi ∼Bernoulli.pi/, i=1, : : : , n,

where yi is 1 or 0, and pi =E[Yi] is the probability of a success for the ith observation, and the
sampling distribution is

f.y|A/=
∫

n∏
i=1

[
exp{Xiβ+ .Aη/i}

1+ exp{Xiβ+ .Aη/i}
]yi

[
1

1+ exp{Xiβ+ .Aη/i/}
]1−yi

dG0.η/, .7/

which typically can only be evaluated numerically. Here the general link function is

pi =g−1{Xiβ+ .Aη/i}= [1+ exp{−Xiβ− .Aη/i}]−1:
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This model can now be fitted by using a variation of the Markov chain Monte Carlo scheme of
Kyung et al. (2010b), where we use a mixture representation of the logistic distribution (Andrews
and Mallow, 1974). Details are in Appendix A.

6. Simulation study

We evaluate our sampler through a simulation study. We need to generate outcomes from Ber-
noulli distributions with random effects that follow the Dirichlet process. To do this we fix K ,
the true number of subclusters (which is unknown in actual circumstances); then we set the
parameter m according to the relation

K =
n∑

i=1

m

m+ i−1
, .8/

where we note that, even if m̂ is quite variable, there is less variability in K̂ =Σn
i=1m̂=.m̂+ i−1/.

When we integrate over the Dirichlet process, as done algorithmically according to Blackwell
and McQueen (1973), the right-hand side of equation (8) is the expected number of clusters,
given the prior distribution on m. Neal (2000), page 252, showed this as the probability in the
limit of a unique table seating, conditional on the previous table seatings, which makes intui-
tive sense since this expectation depends on individuals sitting at unique tables to start a new
(sub)cluster in the algorithm.

Using the GLMDM with the logistic link function, we set the parameters: n= 100, K = 40,
τ2 =1 and β= .1, 2, 3/. Our Dirichlet process for the random effect has precision parameter m
and base distribution G0 =N.0, τ2/. Setting K =40 yields m=24:21. Independently generated
X1 and X2 from N.0, 1/ are used as the fixed design matrix to generate the binary outcome
Y. Then the Gibbs sampler was iterated 200 times to obtain values of m, A, β, τ2 and η. This
procedure was repeated 1000 times, saving the last 500 draws as simulations from the posterior.

We compare the slice sampler with the Gibbs sampler with the Kolmogorov–Smirnov (KS)
distribution normal scale mixture with the prior distribution of β from β|σ2 ∼ N.μ1, dÅσ2I/

and a flat prior on μ, μ∼π.μ/ ∝ c. For the estimation of K , we use the posterior mean of m,
m̂ and calculate K̂ by using equation (8). The starting points of β come from the maximum
likelihood estimates by using iteratively reweighted least squares. All summaries in the tables
are posterior means and standard deviations calculated from the empirical draws of the chain
in its apparent converged (stationary) distribution.

The numerical summary of this process is given in Table 3. The estimate ofβ with KS mixture
sampler is closer to the true value than those with the slice sampler, with smaller standard devi-
ation. To evaluate the convergence ofβ, we consider the auto-correlation function plots that are
given in Fig. 2. The Gibbs sampler of β from the slice sampler exhibits strong auto-correlation,
implying poor mixing. The estimates of K were 43.0423 with standarderror 4.2670 from the

Table 3. Estimation of the coefficients of the GLMDM with logistic link function and the esti-
mate of K , with true values K D40 and β D (1, 2, 3)†

Estimation method β0 β1 β2 K

Slice sampler 2.2796 (0.4628) 3.2709 (0.5558) 4.7529 (0.7208) 43.0423 (4.2670)
KS mixture 0.4900 (0.2024) 1.0494 (0.2468) 1.7787 (0.2491) 43.4646 (4.0844)

†Standard errors are in parentheses.
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Fig. 2. Auto-correlation function plots for the GLMDM with logistic link: (a) β0, slice sampler; (b) β1, slice
sampler; (c) β2, slice sampler; (d) β0, KS mixture sampler; (e) β1, KS mixture sampler; (f) β2, KS mixture
sampler
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slice sampler and 43.4646 with standard error 4.0844 from the KS mixture sampler. Obviously
these turned out to be good estimates of the true K =40.

7. Application of the model to data on suicide attacks

We apply a GLMDM specification with a logit link function, as described, and for the model
parameters with the prior distributions in expression (13) in Appendix A.2 where B = .μ, 0, : : : ,
0/′, dÅ = 5 and .a, b/ are fixed as (3,2). We ran the Markov chain for 50000 iterations, dispos-
ing of the first half. There is no evidence of non-convergence in these runs by using standard
diagnostic tools (e.g. with the commonly accepted procedures: Geweke, Gelman and Rubin,
Heidelberger and Welch, and time series graphics; see Gill (2007), chapter 12). Table 4 provides
results from two approaches: a standard Bayesian random-effects logit model (BRELM) with
flat priors, and a Dirichlet random-effects model, with posterior means, posterior standard
errors and 95% highest posterior density (HPD) intervals.

Note from Table 4 that, although there are no changes in sign or statistical reliability for
the estimated coefficients (posterior means) between the two models, the magnitudes of the
effects are uniformly smaller with the enhanced model and four of the BRELM coefficient
estimates are almost twice as large as the corresponding GLMDM coefficient estimates. This
indicates that there is extra information in the data that is detected by the Dirichlet random
effect that tends to dampen the size of the effect of these explanatory variables on explaining
incidences of terrorist attacks. Specifically, running the standard random-effects model would
find an exaggerated relationship between these explanatory variables and the outcome. In other
work (Gill and Casella, 2009), we observed that the GLMDM model provided a theoretically
important subset of coefficient estimates that were greater in magnitude, so the non-parametric
information does not always diminish the resulting effect sizes.

These results are interesting substantively. The year 1998 does stand out relatively speaking
(until 2001 in the USA of course, but that case is not in our geographic focus). This is a con-
firmatory finding since we know that 1998 was exceptional from empirical and journalistic

Table 4. Global suicide attack data—coefficients, standard errors and HPD intervals from a BRELM and
from the GLMDM using a logit link

Variable Results from BRELM Results from GLMDM–logit

Coefficient Standard 95% HPD Coefficient Standard 95% HPD
error error

Intercept −6.457 4.232 −21.605 −3.407 −4.105 0.559 −5.276 −3.079
YEAR—1998 0.303 0.228 0.135 1.137 0.195 0.039 0.121 0.273
MULT.INCIDENT −0.802 0.488 −2.222 −0.142 −0.585 0.221 −1.028 −0.162
MULTI.PARTY −0.945 0.690 −3.289 −0.225 −0.626 0.229 −1.088 −0.189
SUSP.UNCONFIRM −0.109 0.344 −0.928 0.472 −0.061 0.198 −0.455 0.331
SUCCESSFUL −1.035 0.705 −3.308 −0.262 −0.695 0.245 −1.172 −0.210
ATTACK.TYPE 0.122 0.135 −0.122 0.466 0.098 0.073 −0.046 0.240
WEAPON.TYPE 2.714 1.673 1.346 7.769 1.725 0.320 1.162 2.422
TARGET.TYPE −0.073 0.330 −0.749 0.527 −0.038 0.185 −0.434 0.323
NUM.FATAL −0.019 0.025 −0.085 0.017 −0.013 0.012 −0.036 0.009
NUM.INJUR 0.030 0.030 0.010 0.126 0.017 0.004 0.008 0.025
PSYCHOSOCIAL 0.824 0.633 0.216 3.044 0.555 0.192 0.188 0.944
PROPERTY.DAMAGE 0.439 0.305 0.122 1.406 0.297 0.094 0.114 0.483
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sources. It also appears that multiple co-ordinated incidents are less associated with suicide
attacks (again September 11th, 2001, being a notable exception) since MULT.INCIDENT is
negative and statistically reliable. This is interesting and it suggests that planners of simultaneous
linked terrorist events find it more difficult to manage multiple suicidal agents. MULTI.PARTY
in Table 4 tells a similar story; co-ordinated groups of attackers are less likely to plan suicide
attacks. This may be because together they have more traditional military resources at hand.

Interestingly, if the attack is successful it is less likely to be a suicide attack. When the delivery
vehicle is a person, there are more variables to worry about, in particular whether the individ-
ual is sufficiently practised and indoctrinated. We know from qualitative accounts that fervent
nationalism and religious extremism are critical components of this process. Unfortunately for
the planners of such attacks, the efficacy of these means is almost certainly negatively correlated
with the subject’s age and intelligence.

With regard to type of attack and type of weapon, there is strong evidence that those plot-
ting bomb attacks (generally speaking) are more likely to consider suicide agents to deliver the
weapon. Note that the coefficient for WEAPON.TYPE is more statistically reliable than the
coefficient for ATTACK.TYPE, although they agree on direction.

Increased damage to property is positively associated with a suicide rather than non-suicide
attack. This appears to be related to the terrorists’ preference for easier civilian targets where
an equivalent-sized device will produce more damage than against better protected government
targets.

In addition to ATTACK.TYPE, three other estimated coefficients do not appear to be reli-
able at standard thresholds in the resulting model: TARGET.TYPE, SUSP.UNCONFIRM and
NUM.FATAL (their 95% HPD intervals cover zero). Since 20% of the types of target were mili-
tary versus civilian, it is somewhat surprising not to find a reliable effect conditioning on the rest
of the model. More interestingly, greater fatalities at the event site do not suggest a greater prob-
ability of the damage being produced by a suicide attacker. The apparent, but unproven, lack of
a relationship here suggests that suicide attacks are more driven by other intended consequences
like widespread injuries and the psychological or social effect, both of which show up here as
coefficient estimates that have substantial statistical support. This finding, although surprising
to some, is consistent with a large proportion of the literature on the intentions of terrorists.
Terrorism is most fundamentally aimed at diminishing a national population’s confidence in the
ability of the government to defend them at home.

Finally, we also note that the GLMDM–logit model has uniformly smaller HPD intervals
than the standard generalized linear mixed model–logit model, BRELM. This is consistent with
the findings in Kyung et al. (2009) for models with other link functions. The comparison is shown
dramatically in Fig. 3, where we see that the HPD intervals for the standard random-effects logit
model (grey) are substantially wider than those for the new method (black). Thus, the richer
random-effects model can remove more extraneous variability, providing tighter HPD inter-
vals. This is evidence that the Dirichlet procedure is capturing additional latent information. So
the non-parametric Bayes approach that is taken here provides more conservative estimates of
effect sizes (smaller absolute coefficient estimates) and gives more accuracy for these estimates
(smaller HPD intervals). Thus we have substantially improved the state of data analysis in an
area where researchers struggle.

8. Discussion

In this paper we employ a new methodology to solve an old problem. Terrorism has existed
since humans first built weapons, and the academic study of terrorism increased dramatically
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after September 11th, 2001. In fact, a non-field-specific www.jstor.org search with the word
‘terrorism’ provides 26426 article citations ranging from the year 1848 to the year 2010. The first
citation for the year 2002 occurs at number 16804, meaning that 36% of the 162-year history
occurs after the 154th year (the last 5%). Although this is not a complete analysis, it clearly
indicates a strong upswing after 2001.

Unfortunately, the data routinely present formidable challenges to analysis with conventional
statistical tools, since such data are always more messy and interrelated than in other applica-
tions. The key underlying issue is that a set of diversely organized covert operatives do not
co-operate with data collection efforts and the resulting product is often poorly measured.

Our methodological approach uses a variant of non-parametric Bayesian generalized linear
models with a logistic link function and Dirichlet process random effects. We developed and
verified the properties of new Markov chain Monte Carlo estimation tools for this problem in
previous work, noting that they incorporate latent information such that models fit better in the
presence of unexplained heterogeneity in the data. This turns out to be ideal for the empirical
analysis of terrorism, which has diverse and subversive operators generating the heterogeneous
data. There is evidence from Table 4 that the GLMDM–logit model’s superior properties over
the analogous standard BRELM come from fitting on the latent scale since that is the only
fundamental distinction between the two. The inherent binning to subclusters, that is part of
our sampler, reaches this improvement by recognizing and modelling this underlying heteroge-
neity.

What did we learn about Middle East and northern African terrorism? In general multiple
groups working together do not focus on using suicide attackers. Instead, they appear to work in
more quasi-military fashion with standard weapons. Surprisingly, the more damaging attacks
were more likely to be from non-suicide assailants. This runs counter to media reports, which
tend to focus on the goriness of someone blowing themselves up in a place that is crowded with
civilians. Further supporting this goal is the observation that the coefficient for negative psy-
chological or social impact is positive and reliable, indicating that this is a predetermination by
the plotters of the suicide attack. Although damage to property may not be a prime objective,
the greater the extent of this damage, the more we would expect to observe that it is from a
suicide attack. We also note a complex relationship between the type of weapon that is used
with the type of assailant, the type of attack and the rate of success. These data may not support
clear distinctions of strategy with regard to weapons, except for perhaps bombs which are an
integral part of almost all suicide attacks. In summary, the existence of a set of statistically
reliable coefficient estimates in the presence of substantial heterogeneity in the actors studied
shows that the GLMDM model can uncover common patterns by modelling the unexplained
variance as a latent grouping.

The important question in an empirical study of terrorism is not whether we have explained
the complete set of motivations for how and why these deadly attacks are developed; it is
whether we have added anything to our current knowledge. This is because terrorism is such an
important and vexing political problem. In this statistical application we coaxed some revealing
information out of the data that increases understanding on the correlates of suicide attacks in
the Middle East and northern Africa. Some of these findings are confirmatory, such as target
preference and intergroup co-operation, whereas others, like the success and levels of damage
that are inflicted by suicide attacks relative to non-suicide attacks, is surprising.

The results described above contain prescriptive advice for governmental organizations seek-
ing to reduce the number and effectiveness of intentionally violent events. Although successful
attacks are less associated with suicide strategies, suicide attackers generally inflict greater dam-
age to property, additional injuries and, more importantly, more psychological or social impact
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on the populace. Therefore countries in this region are justified in their counterterrorism policies
that reduce training, remove motivation or interdict suicide attackers, even at the expense of
less attention to non-suicide attackers. Strategic terrorism is mainly about attacking the social
contract between a people and their government by eroding trust. The factors that are observed
to have a stronger link to suicide attacks are more damaging to this relationship and therefore
deserve more attention from governments that are concerned about the morale and support of
their citizens.
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Appendix A: Fitting the logistic–Dirichlet model

A.1. Logistic distribution as a mixture of normals
The logistic distribution can be represented as a mixture of normals (see Andrews and Mallows (1974)
or West (1987)), which leads us to a very efficient algorithm that can be put into a Gibbs sampler. If Z
has a standard normal distribution, and V=2 has the asymptotic distribution of the Kolmogorov distance
statistic and is independent of Z, then Y =Z=V is logistic. From the identities in Andrews and Mallows
(1974) (see also theorem 10.2.1 in Balakrishnan (1992)), for

fX.x/=8
∞∑
α=1

.−1/α+1α2x exp.−2α2x2/, x�0, .9/

the KS density function (see Devroye (1986)), we can write

fY .y/=
∫ ∞

0

[
1√
.2π/

1
2x

exp
{

− 1
2

(
y

2x

)2 }]
fX.x/dx= exp.−y/

{1+ exp.−y/}2
, .10/

where the density in square brackets is N.0, 1=4x2/ and the result is the density function of a logistic
distribution with mean 0 and variance π2=3. Therefore, Y ∼ L.0,π2=3/, where L.·/ denotes the logistic
distribution.

Starting from the logistic distribution, we can model binary responses with a logit link function through
a latent variable Wi such that

Wi =Xiβ+ψi + "i, "i ∼L
(

0,
π2

3
σ2

)
, .11/

with yi =1 if Wi > 0 and yi =0 if Wi �0, for i=1, : : : , n. It can be shown that Yi are independent Bernoulli
random variables with pi = [1 + exp{−Xiβ− .Aη/i}]−1, the probability of success, and without loss of
generality we fix σ= 1. With the mixture representation (10) an equivalent representation uses a normal
latent variable, resulting in the likelihood function

Lk.β, τ 2,η, U|A, y,σ2/=
n∏

i=1
{I.Ui > 0/I.yi =1/+ I.Ui �0/I.yi =0/}

×
∫ ∞

0

{
1

2πσ2.2ξ/2

}n=2

exp
{

− 1
2σ2.2ξ/2

|U −Xβ−Aη|2
}

×8
∞∑
α=1

.−1/α+1α2ξ exp.−2α2ξ2/dξ
(

1
2πτ 2

)k=2

exp
(

− 1
2τ 2

|η|2
)

, .12/

where U = .U1, : : : , Un/, and Ui is the truncated normal variable such that

Ui =Xiβ+ .Aη/i + "i, "i ∼N
{

0,σ2.2ξ/2
}
,

and yi =1 if Ui > 0 and yi =0 if Ui �0, for i=1, : : : , n.
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A.2. Sampling schemes
An overview of the general sampling scheme is as follows. We identify three groups of parameters:

(a) m, the precision parameter of the Dirichlet process,
(b) A, the indicator matrix of the partition defining the subclusters, and
(c) .η,β, τ 2/, the model parameters.

In the Gibbs sampler we iterate between these three groups until convergence.

Step 1: conditional on m and A, generate .η,β, τ 2/|A, m.
Step 2: conditional on .η,β, τ 2/ and m, generate A, a new partition matrix.
Step 3: conditional on .η,β, τ 2/ and A, generate m, the new precision parameter.

The model parameters are given the following prior distributions:

β|μ,σ2 ∼N.B, dÅσ2I/,
μ∼π.μ/∝ c . a flat prior with constant c/

τ 2 ∼ inverted gamma.a, b/,

⎫⎪⎬
⎪⎭ .13/

where B = .μ, 0, 0/′, dÅ > 1 and .a, b/ are fixed such that the inverse gamma prior is diffuse (a= 1; b very
small). We can either fix σ2 or put a prior on it and estimate it in the hierarchical model with priors; here
we shall fix a value for σ2. For the base measure of the Dirichlet process, we assume a normal distribution
with mean 0 and variance τ 2, N.0, τ 2/.

A.2.1. Generating the logistic parameters
Given ξ, for fixed m and A, a Gibbs sampler of .μ,β, τ 2,η, U/ is

η|μ,β, τ 2, U, A, y,σ2 ∼Nk

[
1

σ2.2ξ/2

{
1
τ 2

I + 1
σ2.2ξ/2

A′A
}−1

A′.U −Xβ/,
{

1
τ 2

I + 1
σ2.2ξ/2

A′A
}−1 ]

,

μ|β, τ 2,η, U, A, y,σ2 ∼N.β0, dÅσ2/,

β|μ, τ 2,η, U, A, y,σ2 ∼Np

[{
1

dÅ I + 1
.2ξ/2

X′X
}−1 {

1
dÅ B+ 1

.2ξ/2
X′.U −Aη/

}
,

σ2

{
1

dÅ I + 1
.2ξ/2

X′X
}−1 ]

,

τ 2|μ,β,η, U, A, y,σ2 ∼ inverted gamma
(

k

2
+a,

1
2
|η|2 +b

)
,

Ui|β, τ 2,η, A, yi,σ2 ∼
{

N
{

Xiβ+ .Aη/i,σ2.2ξ/2
}

I.Ui > 0/ if yi =1,
N

{
Xiβ+ .Aη/i,σ2.2ξ/2

}
I.Ui �0/ if yi =0

where B= .μ, 0, 0/′ and μ is from the posterior density. Then we update ξ from

ξ|β, τ 2,η, U, A, y ∼
{

1
.2ξ/2

}n=2

exp
{

− 1
2σ2.2ξ/2

|U −Xβ−Aη|2
}

×8
∞∑
α=1

.−1/α+1α2ξ exp.−2α2ξ2/:

The conditional posterior density of ξ is the product of an inverted gamma prior with parametersα=2−1
and −.1=8σ2/|U −Xβ−Aη|2, and the infinite sum of the sequence .−1/α+1α2ξ exp.−2α2ξ2/. To generate
samples from this target density, we consider the alternating series method that was proposed by Devroye
(1986). On the basis of his notation, we take

c h.ξ/=8
(

1
ξ2

)n=2

exp
(

− 1
8σ2ξ2

|U −Xβ−Aη|2
)
ξ exp.−2ξ2/,

an.ξ/= .α+1/2 exp[−2ξ2{.α+1/2 −1}]:

Here, we need to generate samples from h.ξ/, and we use accept–reject sampling with candidate g.ξÅ/=
2 exp.−2ξÅ/, the exponential distribution with λ=2, where ξÅ = ξ2. Then we follow Devroye’s method.
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A.2.2. Dirichlet process parameters
In generating the Dirichlet process parameters we first update the partition matrix A and then the precision
parameter m. We use a Metropolis–Hastings algorithm with a candidate taken from a multinomial or
Dirichlet distribution. This produces a Gibbs sampler that converges faster than the popular ‘stick break-
ing’ algorithm. (See Kyung et al. (2010b) for details.)

Given the model parameters at iteration t, θ.t/ = .η.t/,β.t/, τ 2.t//, we generate

q.t+1/ = .q
.t+1/
1 , . . . q.t+1/

n /∼Dirichlet.n.t/
1 +1, . . . , n

.t/
k +1, 1, . . . , 1/,

A.t+1/ ∼P.A′/f.y|θ.t+1/, A′/
(

n
n1 · · ·nk′

) k′∏
j=1

.q
.t+1/
j /

n′
j .14/

where nj > 0, n1 + . . . +nk′ =n.
Generating q.t+1/ is easy. To generate A.t+1/ we first generate a candidate that is an n×n matrix where

each row is an independent multinomial distribution with probabilities q.t+1/, and the effective dimension
of the matrix, the size of the partition, k.t+1/, is the non-zero column sums. Deleting the columns with
column sum 0 is a marginalization of the multinomial distribution. The probability of the candidate is
given by

P.A.t+1//= Γ.n/

Γ.n−k.t+1/ +1/

Γ.n
.t+1/

k.t+1/ +n−k.t+1/ +1/

Γ.2n/

k.t+1/−1∏
j=1

Γ.n
.t+1/
j +1/

and a Metropolis–Hastings step is then done.

A.2.3. Generating the precision parameter
Rather than estimate m conventionally, a better strategy is to include m in the Gibbs sampler, as the mar-
ginal maximum likelihood estimate can be very unstable (Kyung et al., 2010b). Conditional on .θ, A, y/,
and k, with a prior g.m/ we obtain the posterior density

π.m|θ, A, y/= Γ.m/

Γ.m+n/
g.m/mk

/∫ ∞

0

Γ.m/

Γ.m+n/
g.m/mk dm, .15/

where
∫
π.m|θ, A, y/ dm < ∞ as long as the exponent of m is positive. Note how far removed m is from

the data, as the posterior depends only on the number of groups k. We consider a gamma distribution as
a prior,

g.m/= ma−1 exp.−m=b/

Γ.a/ba
,

and generate m by using a Metropolis–Hastings algorithm with another gamma density as a candidate.
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